/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "SensorEventQueue.h" #include "multihal.h" #define LOG_NDEBUG 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static pthread_mutex_t init_modules_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t init_sensors_mutex = PTHREAD_MUTEX_INITIALIZER; // This mutex is shared by all queues static pthread_mutex_t queue_mutex = PTHREAD_MUTEX_INITIALIZER; // Used to pause the multihal poll(). Broadcasted by sub-polling tasks if waiting_for_data. static pthread_cond_t data_available_cond = PTHREAD_COND_INITIALIZER; bool waiting_for_data = false; // Vector of sub modules, whose indexes are referred to in this file as module_index. static std::vector *sub_hw_modules = nullptr; // Vector of sub modules shared object handles static std::vector *so_handles = nullptr; /* * Comparable class that globally identifies a sensor, by module index and local handle. * A module index is the module's index in sub_hw_modules. * A local handle is the handle the sub-module assigns to a sensor. */ struct FullHandle { int moduleIndex; int localHandle; bool operator<(const FullHandle &that) const { if (moduleIndex < that.moduleIndex) { return true; } if (moduleIndex > that.moduleIndex) { return false; } return localHandle < that.localHandle; } bool operator==(const FullHandle &that) const { return moduleIndex == that.moduleIndex && localHandle == that.localHandle; } }; std::map global_to_full; std::map full_to_global; int next_global_handle = 1; static int assign_global_handle(int module_index, int local_handle) { int global_handle = next_global_handle++; FullHandle full_handle; full_handle.moduleIndex = module_index; full_handle.localHandle = local_handle; full_to_global[full_handle] = global_handle; global_to_full[global_handle] = full_handle; return global_handle; } // Returns the local handle, or -1 if it does not exist. static int get_local_handle(int global_handle) { if (global_to_full.count(global_handle) == 0) { ALOGW("Unknown global_handle %d", global_handle); return -1; } return global_to_full[global_handle].localHandle; } // Returns the sub_hw_modules index of the module that contains the sensor associates with this // global_handle, or -1 if that global_handle does not exist. static int get_module_index(int global_handle) { if (global_to_full.count(global_handle) == 0) { ALOGW("Unknown global_handle %d", global_handle); return -1; } FullHandle f = global_to_full[global_handle]; ALOGV("FullHandle for global_handle %d: moduleIndex %d, localHandle %d", global_handle, f.moduleIndex, f.localHandle); return f.moduleIndex; } // Returns the global handle for this full_handle, or -1 if the full_handle is unknown. static int get_global_handle(FullHandle* full_handle) { int global_handle = -1; if (full_to_global.count(*full_handle)) { global_handle = full_to_global[*full_handle]; } else { ALOGW("Unknown FullHandle: moduleIndex %d, localHandle %d", full_handle->moduleIndex, full_handle->localHandle); } return global_handle; } static const int SENSOR_EVENT_QUEUE_CAPACITY = 36; struct TaskContext { sensors_poll_device_t* device; SensorEventQueue* queue; }; void *writerTask(void* ptr) { ALOGV("writerTask STARTS"); TaskContext* ctx = (TaskContext*)ptr; sensors_poll_device_t* device = ctx->device; SensorEventQueue* queue = ctx->queue; sensors_event_t* buffer; int eventsPolled; while (1) { pthread_mutex_lock(&queue_mutex); if (queue->waitForSpace(&queue_mutex)) { ALOGV("writerTask waited for space"); } int bufferSize = queue->getWritableRegion(SENSOR_EVENT_QUEUE_CAPACITY, &buffer); // Do blocking poll outside of lock pthread_mutex_unlock(&queue_mutex); ALOGV("writerTask before poll() - bufferSize = %d", bufferSize); eventsPolled = device->poll(device, buffer, bufferSize); ALOGV("writerTask poll() got %d events.", eventsPolled); if (eventsPolled <= 0) { if (eventsPolled < 0) { ALOGV("writerTask ignored error %d from %s", eventsPolled, device->common.module->name); ALOGE("ERROR: Fix %s so it does not return error from poll()", device->common.module->name); } pthread_mutex_unlock(&queue_mutex); continue; } pthread_mutex_lock(&queue_mutex); queue->markAsWritten(eventsPolled); ALOGV("writerTask wrote %d events", eventsPolled); if (waiting_for_data) { ALOGV("writerTask - broadcast data_available_cond"); pthread_cond_broadcast(&data_available_cond); } pthread_mutex_unlock(&queue_mutex); } // never actually returns return NULL; } /* * Cache of all sensors, with original handles replaced by global handles. * This will be handled to get_sensors_list() callers. */ static struct sensor_t const* global_sensors_list = NULL; static int global_sensors_count = -1; /* * Extends a sensors_poll_device_1 by including all the sub-module's devices. */ struct sensors_poll_context_t { /* * This is the device that SensorDevice.cpp uses to make API calls * to the multihal, which fans them out to sub-HALs. */ sensors_poll_device_1 proxy_device; // must be first void addSubHwDevice(struct hw_device_t*); int activate(int handle, int enabled); int setDelay(int handle, int64_t ns); int poll(sensors_event_t* data, int count); int batch(int handle, int flags, int64_t period_ns, int64_t timeout); int flush(int handle); int inject_sensor_data(const sensors_event_t *data); int register_direct_channel(const struct sensors_direct_mem_t* mem, int channel_handle); int config_direct_report(int sensor_handle, int channel_handle, const struct sensors_direct_cfg_t *config); int close(); std::vector sub_hw_devices; std::vector queues; std::vector threads; int nextReadIndex; sensors_poll_device_t* get_v0_device_by_handle(int global_handle); sensors_poll_device_1_t* get_v1_device_by_handle(int global_handle); sensors_poll_device_1_t* get_primary_v1_device(); int get_device_version_by_handle(int global_handle); void copy_event_remap_handle(sensors_event_t* src, sensors_event_t* dest, int sub_index); }; void sensors_poll_context_t::addSubHwDevice(struct hw_device_t* sub_hw_device) { ALOGV("addSubHwDevice"); this->sub_hw_devices.push_back(sub_hw_device); SensorEventQueue *queue = new SensorEventQueue(SENSOR_EVENT_QUEUE_CAPACITY); this->queues.push_back(queue); TaskContext* taskContext = new TaskContext(); taskContext->device = (sensors_poll_device_t*) sub_hw_device; taskContext->queue = queue; pthread_t writerThread; pthread_create(&writerThread, NULL, writerTask, taskContext); this->threads.push_back(writerThread); } // Returns the device pointer, or NULL if the global handle is invalid. sensors_poll_device_t* sensors_poll_context_t::get_v0_device_by_handle(int global_handle) { int sub_index = get_module_index(global_handle); if (sub_index < 0 || sub_index >= (int) this->sub_hw_devices.size()) { return NULL; } return (sensors_poll_device_t*) this->sub_hw_devices[sub_index]; } // Returns the device pointer, or NULL if the global handle is invalid. sensors_poll_device_1_t* sensors_poll_context_t::get_v1_device_by_handle(int global_handle) { int sub_index = get_module_index(global_handle); if (sub_index < 0 || sub_index >= (int) this->sub_hw_devices.size()) { return NULL; } return (sensors_poll_device_1_t*) this->sub_hw_devices[sub_index]; } // Returns the device pointer, or NULL if primary hal does not exist sensors_poll_device_1_t* sensors_poll_context_t::get_primary_v1_device() { if (sub_hw_devices.size() < 1) { return nullptr; } return (sensors_poll_device_1_t*) this->sub_hw_devices[0]; } // Returns the device version, or -1 if the handle is invalid. int sensors_poll_context_t::get_device_version_by_handle(int handle) { sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle); if (v0) { return v0->common.version; } else { return -1; } } // Android N and hire require sensor HALs to be at least 1_3 compliant #define HAL_VERSION_IS_COMPLIANT(version) \ (version >= SENSORS_DEVICE_API_VERSION_1_3) // Returns true if HAL is compliant, false if HAL is not compliant or if handle is invalid static bool halIsCompliant(sensors_poll_context_t *ctx, int handle) { int version = ctx->get_device_version_by_handle(handle); return version != -1 && HAL_VERSION_IS_COMPLIANT(version); } static bool halIsAPILevelCompliant(sensors_poll_context_t *ctx, int handle, int level) { int version = ctx->get_device_version_by_handle(handle); return version != -1 && (version >= level); } static bool halSupportDirectSensorReport(sensors_poll_device_1_t* v1) { return v1 != nullptr && HAL_VERSION_IS_COMPLIANT(v1->common.version) && v1->register_direct_channel != nullptr && v1->config_direct_report != nullptr; } const char *apiNumToStr(int version) { switch(version) { case SENSORS_DEVICE_API_VERSION_1_0: return "SENSORS_DEVICE_API_VERSION_1_0"; case SENSORS_DEVICE_API_VERSION_1_1: return "SENSORS_DEVICE_API_VERSION_1_1"; case SENSORS_DEVICE_API_VERSION_1_2: return "SENSORS_DEVICE_API_VERSION_1_2"; case SENSORS_DEVICE_API_VERSION_1_3: return "SENSORS_DEVICE_API_VERSION_1_3"; case SENSORS_DEVICE_API_VERSION_1_4: return "SENSORS_DEVICE_API_VERSION_1_4"; default: return "UNKNOWN"; } } int sensors_poll_context_t::activate(int handle, int enabled) { int retval = -EINVAL; ALOGV("activate"); int local_handle = get_local_handle(handle); sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle); if (halIsCompliant(this, handle) && local_handle >= 0 && v0) { retval = v0->activate(v0, local_handle, enabled); } else { ALOGE("IGNORING activate(enable %d) call to non-API-compliant sensor handle=%d !", enabled, handle); } ALOGV("retval %d", retval); return retval; } int sensors_poll_context_t::setDelay(int handle, int64_t ns) { int retval = -EINVAL; ALOGV("setDelay"); int local_handle = get_local_handle(handle); sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle); if (halIsCompliant(this, handle) && local_handle >= 0 && v0) { retval = v0->setDelay(v0, local_handle, ns); } else { ALOGE("IGNORING setDelay() call for non-API-compliant sensor handle=%d !", handle); } ALOGV("retval %d", retval); return retval; } void sensors_poll_context_t::copy_event_remap_handle(sensors_event_t* dest, sensors_event_t* src, int sub_index) { memcpy(dest, src, sizeof(struct sensors_event_t)); // A normal event's "sensor" field is a local handle. Convert it to a global handle. // A meta-data event must have its sensor set to 0, but it has a nested event // with a local handle that needs to be converted to a global handle. FullHandle full_handle; full_handle.moduleIndex = sub_index; // If it's a metadata event, rewrite the inner payload, not the sensor field. // If the event's sensor field is unregistered for any reason, rewrite the sensor field // with a -1, instead of writing an incorrect but plausible sensor number, because // get_global_handle() returns -1 for unknown FullHandles. if (dest->type == SENSOR_TYPE_META_DATA) { full_handle.localHandle = dest->meta_data.sensor; dest->meta_data.sensor = get_global_handle(&full_handle); } else { full_handle.localHandle = dest->sensor; dest->sensor = get_global_handle(&full_handle); } } int sensors_poll_context_t::poll(sensors_event_t *data, int maxReads) { ALOGV("poll"); int empties = 0; int queueCount = 0; int eventsRead = 0; pthread_mutex_lock(&queue_mutex); queueCount = (int)this->queues.size(); while (eventsRead == 0) { while (empties < queueCount && eventsRead < maxReads) { SensorEventQueue* queue = this->queues.at(this->nextReadIndex); sensors_event_t* event = queue->peek(); if (event == NULL) { empties++; } else { empties = 0; this->copy_event_remap_handle(&data[eventsRead], event, nextReadIndex); if (data[eventsRead].sensor == SENSORS_HANDLE_BASE - 1) { // Bad handle, do not pass corrupted event upstream ! ALOGW("Dropping bad local handle event packet on the floor"); } else { eventsRead++; } queue->dequeue(); } this->nextReadIndex = (this->nextReadIndex + 1) % queueCount; } if (eventsRead == 0) { // The queues have been scanned and none contain data, so wait. ALOGV("poll stopping to wait for data"); waiting_for_data = true; pthread_cond_wait(&data_available_cond, &queue_mutex); waiting_for_data = false; empties = 0; } } pthread_mutex_unlock(&queue_mutex); ALOGV("poll returning %d events.", eventsRead); return eventsRead; } int sensors_poll_context_t::batch(int handle, int flags, int64_t period_ns, int64_t timeout) { ALOGV("batch"); int retval = -EINVAL; int local_handle = get_local_handle(handle); sensors_poll_device_1_t* v1 = this->get_v1_device_by_handle(handle); if (halIsCompliant(this, handle) && local_handle >= 0 && v1) { retval = v1->batch(v1, local_handle, flags, period_ns, timeout); } else { ALOGE("IGNORING batch() call to non-API-compliant sensor handle=%d !", handle); } ALOGV("retval %d", retval); return retval; } int sensors_poll_context_t::flush(int handle) { ALOGV("flush"); int retval = -EINVAL; int local_handle = get_local_handle(handle); sensors_poll_device_1_t* v1 = this->get_v1_device_by_handle(handle); if (halIsCompliant(this, handle) && local_handle >= 0 && v1) { retval = v1->flush(v1, local_handle); } else { ALOGE("IGNORING flush() call to non-API-compliant sensor handle=%d !", handle); } ALOGV("retval %d", retval); return retval; } int sensors_poll_context_t::inject_sensor_data(const sensors_event_t *data) { int retval = -EINVAL; ALOGV("inject_sensor_data"); if (data->sensor == -1) { // operational parameter sensors_poll_device_1_t* v1 = get_primary_v1_device(); if (v1 && v1->common.version >= SENSORS_DEVICE_API_VERSION_1_4) { retval = v1->inject_sensor_data(v1, data); } else { ALOGE("IGNORED inject_sensor_data(operational param) call to non-API-compliant sensor"); return -ENOSYS; } } else { // Get handle for the sensor owning the event being injected int local_handle = get_local_handle(data->sensor); sensors_poll_device_1_t* v1 = this->get_v1_device_by_handle(data->sensor); if (halIsAPILevelCompliant(this, data->sensor, SENSORS_DEVICE_API_VERSION_1_4) && local_handle >= 0 && v1) { // if specific sensor is used, we have to replace global sensor handle // with local one, before passing to concrete HAL sensors_event_t data_copy = *data; data_copy.sensor = local_handle; retval = v1->inject_sensor_data(v1, &data_copy); } else { ALOGE("IGNORED inject_sensor_data(type=%d, handle=%d) call to non-API-compliant sensor", data->type, data->sensor); retval = -ENOSYS; } } ALOGV("retval %d", retval); return retval; } int sensors_poll_context_t::register_direct_channel(const struct sensors_direct_mem_t* mem, int channel_handle) { int retval = -EINVAL; ALOGV("register_direct_channel"); sensors_poll_device_1_t* v1 = get_primary_v1_device(); if (v1 && halSupportDirectSensorReport(v1)) { retval = v1->register_direct_channel(v1, mem, channel_handle); } else { ALOGE("IGNORED register_direct_channel(mem=%p, handle=%d) call to non-API-compliant sensor", mem, channel_handle); retval = -ENOSYS; } ALOGV("retval %d", retval); return retval; } int sensors_poll_context_t::config_direct_report(int sensor_handle, int channel_handle, const struct sensors_direct_cfg_t *config) { int retval = -EINVAL; ALOGV("config_direct_report"); if (config != nullptr) { int local_handle = get_local_handle(sensor_handle); sensors_poll_device_1_t* v1 = get_primary_v1_device(); if (v1 && halSupportDirectSensorReport(v1)) { retval = v1->config_direct_report(v1, local_handle, channel_handle, config); } else { ALOGE("IGNORED config_direct_report(sensor=%d, channel=%d, rate_level=%d) call to " "non-API-compliant sensor", sensor_handle, channel_handle, config->rate_level); retval = -ENOSYS; } } ALOGV("retval %d", retval); return retval; } int sensors_poll_context_t::close() { ALOGV("close"); for (std::vector::iterator it = this->sub_hw_devices.begin(); it != this->sub_hw_devices.end(); it++) { hw_device_t* dev = *it; int retval = dev->close(dev); ALOGV("retval %d", retval); } return 0; } static int device__close(struct hw_device_t *dev) { pthread_mutex_lock(&init_modules_mutex); sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev; if (ctx != NULL) { int retval = ctx->close(); delete ctx; pthread_mutex_unlock(&init_modules_mutex); return retval; } if (sub_hw_modules != nullptr) { delete sub_hw_modules; sub_hw_modules = nullptr; } if (so_handles != nullptr) { for (auto handle : *so_handles) { dlclose(handle); } delete so_handles; so_handles = nullptr; } pthread_mutex_unlock(&init_modules_mutex); return 0; } static int device__activate(struct sensors_poll_device_t *dev, int handle, int enabled) { sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev; return ctx->activate(handle, enabled); } static int device__setDelay(struct sensors_poll_device_t *dev, int handle, int64_t ns) { sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev; return ctx->setDelay(handle, ns); } static int device__poll(struct sensors_poll_device_t *dev, sensors_event_t* data, int count) { sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev; return ctx->poll(data, count); } static int device__batch(struct sensors_poll_device_1 *dev, int handle, int flags, int64_t period_ns, int64_t timeout) { (void)flags; (void)timeout; sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev; ctx->setDelay(handle, period_ns); return 0; } static int device__flush(struct sensors_poll_device_1 *dev, int handle) { (void)dev; (void)handle; return -EINVAL; } static int device__inject_sensor_data(struct sensors_poll_device_1 *dev, const sensors_event_t *data) { sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev; return ctx->inject_sensor_data(data); } static int device__register_direct_channel(struct sensors_poll_device_1 *dev, const struct sensors_direct_mem_t* mem, int channel_handle) { sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev; return ctx->register_direct_channel(mem, channel_handle); } static int device__config_direct_report(struct sensors_poll_device_1 *dev, int sensor_handle, int channel_handle, const struct sensors_direct_cfg_t *config) { sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev; return ctx->config_direct_report(sensor_handle, channel_handle, config); } static int open_sensors(const struct hw_module_t* module, const char* name, struct hw_device_t** device); /* * Adds valid paths from the config file to the vector passed in. * The vector must not be null. */ static std::vector get_so_paths() { std::vector so_paths; const std::vector config_path_list( { MULTI_HAL_CONFIG_FILE_PATH, DEPRECATED_MULTI_HAL_CONFIG_FILE_PATH }); std::ifstream stream; const char *path = nullptr; for (auto i : config_path_list) { std::ifstream f(i); if (f) { stream = std::move(f); path = i; break; } } if(!stream) { ALOGW("No multihal config file found"); return so_paths; } ALOGE_IF(strcmp(path, DEPRECATED_MULTI_HAL_CONFIG_FILE_PATH) == 0, "Multihal configuration file path %s is not compatible with Treble " "requirements. Please move it to %s.", path, MULTI_HAL_CONFIG_FILE_PATH); ALOGV("Multihal config file found at %s", path); std::string line; while (std::getline(stream, line)) { ALOGV("config file line: '%s'", line.c_str()); so_paths.push_back(line); } return so_paths; } /* * Ensures that the sub-module array is initialized. * This can be first called from get_sensors_list or from open_sensors. */ static void lazy_init_modules() { pthread_mutex_lock(&init_modules_mutex); if (sub_hw_modules != NULL) { pthread_mutex_unlock(&init_modules_mutex); return; } std::vector so_paths(get_so_paths()); // dlopen the module files and cache their module symbols in sub_hw_modules sub_hw_modules = new std::vector(); so_handles = new std::vector(); dlerror(); // clear any old errors const char* sym = HAL_MODULE_INFO_SYM_AS_STR; for (const auto &s : so_paths) { const char* path = s.c_str(); void* lib_handle = dlopen(path, RTLD_LAZY); if (lib_handle == NULL) { ALOGW("dlerror(): %s", dlerror()); } else { ALOGI("Loaded library from %s", path); ALOGV("Opening symbol \"%s\"", sym); // clear old errors dlerror(); struct hw_module_t* module = (hw_module_t*) dlsym(lib_handle, sym); const char* error; if ((error = dlerror()) != NULL) { ALOGW("Error calling dlsym: %s", error); } else if (module == NULL) { ALOGW("module == NULL"); } else { ALOGV("Loaded symbols from \"%s\"", sym); sub_hw_modules->push_back(module); so_handles->push_back(lib_handle); lib_handle = nullptr; } } if (lib_handle != nullptr) { dlclose(lib_handle); } } pthread_mutex_unlock(&init_modules_mutex); } /* * Fix the fields of the sensor to be compliant with the API version * reported by the wrapper. */ static void fix_sensor_fields(sensor_t& sensor) { /* * Because batching and flushing don't work modify the * sensor fields to not report any fifo counts. */ sensor.fifoReservedEventCount = 0; sensor.fifoMaxEventCount = 0; } /* * Lazy-initializes global_sensors_count, global_sensors_list, and module_sensor_handles. */ static void lazy_init_sensors_list() { ALOGV("lazy_init_sensors_list"); pthread_mutex_lock(&init_sensors_mutex); if (global_sensors_list != NULL) { // already initialized pthread_mutex_unlock(&init_sensors_mutex); ALOGV("lazy_init_sensors_list - early return"); return; } ALOGV("lazy_init_sensors_list needs to do work"); lazy_init_modules(); // Count all the sensors, then allocate an array of blanks. global_sensors_count = 0; const struct sensor_t *subhal_sensors_list; for (std::vector::iterator it = sub_hw_modules->begin(); it != sub_hw_modules->end(); it++) { struct sensors_module_t *module = (struct sensors_module_t*) *it; global_sensors_count += module->get_sensors_list(module, &subhal_sensors_list); ALOGV("increased global_sensors_count to %d", global_sensors_count); } // The global_sensors_list is full of consts. // Manipulate this non-const list, and point the const one to it when we're done. sensor_t* mutable_sensor_list = new sensor_t[global_sensors_count]; // index of the next sensor to set in mutable_sensor_list int mutable_sensor_index = 0; int module_index = 0; for (std::vector::iterator it = sub_hw_modules->begin(); it != sub_hw_modules->end(); it++) { hw_module_t *hw_module = *it; ALOGV("examine one module"); // Read the sub-module's sensor list. struct sensors_module_t *module = (struct sensors_module_t*) hw_module; int module_sensor_count = module->get_sensors_list(module, &subhal_sensors_list); ALOGV("the module has %d sensors", module_sensor_count); // Copy the HAL's sensor list into global_sensors_list, // with the handle changed to be a global handle. for (int i = 0; i < module_sensor_count; i++) { ALOGV("examining one sensor"); const struct sensor_t *local_sensor = &subhal_sensors_list[i]; int local_handle = local_sensor->handle; memcpy(&mutable_sensor_list[mutable_sensor_index], local_sensor, sizeof(struct sensor_t)); // sensor direct report is only for primary module if (module_index != 0) { mutable_sensor_list[mutable_sensor_index].flags &= ~(SENSOR_FLAG_MASK_DIRECT_REPORT | SENSOR_FLAG_MASK_DIRECT_CHANNEL); } // Overwrite the global version's handle with a global handle. int global_handle = assign_global_handle(module_index, local_handle); mutable_sensor_list[mutable_sensor_index].handle = global_handle; ALOGV("module_index %d, local_handle %d, global_handle %d", module_index, local_handle, global_handle); fix_sensor_fields(mutable_sensor_list[mutable_sensor_index]); mutable_sensor_index++; } module_index++; } // Set the const static global_sensors_list to the mutable one allocated by this function. global_sensors_list = mutable_sensor_list; pthread_mutex_unlock(&init_sensors_mutex); ALOGV("end lazy_init_sensors_list"); } static int module__get_sensors_list(__unused struct sensors_module_t* module, struct sensor_t const** list) { ALOGV("module__get_sensors_list start"); lazy_init_sensors_list(); *list = global_sensors_list; ALOGV("global_sensors_count: %d", global_sensors_count); for (int i = 0; i < global_sensors_count; i++) { ALOGV("sensor type: %d", global_sensors_list[i].type); } return global_sensors_count; } static struct hw_module_methods_t sensors_module_methods = { .open = open_sensors }; struct sensors_module_t HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .version_major = 1, .version_minor = 1, .id = SENSORS_HARDWARE_MODULE_ID, .name = "MultiHal Sensor Module", .author = "Google, Inc", .methods = &sensors_module_methods, .dso = NULL, .reserved = {0}, }, .get_sensors_list = module__get_sensors_list }; struct sensors_module_t *get_multi_hal_module_info() { return (&HAL_MODULE_INFO_SYM); } static int open_sensors(const struct hw_module_t* hw_module, const char* name, struct hw_device_t** hw_device_out) { ALOGV("open_sensors begin..."); lazy_init_modules(); // Create proxy device, to return later. sensors_poll_context_t *dev = new sensors_poll_context_t(); memset(dev, 0, sizeof(sensors_poll_device_1_t)); dev->proxy_device.common.tag = HARDWARE_DEVICE_TAG; dev->proxy_device.common.version = SENSORS_DEVICE_API_VERSION_1_4; dev->proxy_device.common.module = const_cast(hw_module); dev->proxy_device.common.close = device__close; dev->proxy_device.activate = device__activate; dev->proxy_device.setDelay = device__setDelay; dev->proxy_device.poll = device__poll; dev->proxy_device.batch = device__batch; dev->proxy_device.flush = device__flush; dev->proxy_device.inject_sensor_data = device__inject_sensor_data; dev->proxy_device.register_direct_channel = device__register_direct_channel; dev->proxy_device.config_direct_report = device__config_direct_report; dev->nextReadIndex = 0; // Open() the subhal modules. Remember their devices in a vector parallel to sub_hw_modules. for (std::vector::iterator it = sub_hw_modules->begin(); it != sub_hw_modules->end(); it++) { sensors_module_t *sensors_module = (sensors_module_t*) *it; struct hw_device_t* sub_hw_device; int sub_open_result = sensors_module->common.methods->open(*it, name, &sub_hw_device); if (!sub_open_result) { if (!HAL_VERSION_IS_COMPLIANT(sub_hw_device->version)) { ALOGE("SENSORS_DEVICE_API_VERSION_1_3 or newer is required for all sensor HALs"); ALOGE("This HAL reports non-compliant API level : %s", apiNumToStr(sub_hw_device->version)); ALOGE("Sensors belonging to this HAL will get ignored !"); } dev->addSubHwDevice(sub_hw_device); } } // Prepare the output param and return *hw_device_out = &dev->proxy_device.common; ALOGV("...open_sensors end"); return 0; }